Tag: text processing

# Deep Learning for NLP

Deep learning is usually associated with neural networks.

In this article, we show that generative classifiers are also capable of deep learning.

What is deep learning?

Deep learning is a method of machine learning involving the use of multiple processing layers to learn non-linear functions or boundaries.

What are generative classifiers?

Generative classifiers use the Bayes rule to invert probabilities of the features F given a class c into a prediction of the class c given the features F.

The class predicted by the classifier is the one yielding the highest P(c|F).

A commonly used generative classifier is the Naive Bayes classifier.  It has two layers (one for the features F and one for the classes C).

Deep learning using generative classifiers

The first thing you need for deep learning is a hidden layer.  So you add one more layer H between the C and F layers to get a Hierarchical Bayesian classifier (HBC).

Now, you can compute P(c|F) in a HBC in two ways:

The first equation computes P(c|F) using a product of sums (POS).  The second equation computes P(c|F) using a sum of products (SOP).

POS Equation

We discovered something very interesting about these two equations.

It turns out that if you use the first equation, the HBC reduces to a Naive Bayes classifier. Such an HBC can only learn linear (or quadratic) decision boundaries.

Consider the discrete XOR-like function shown in Figure 1.

There is no way to separate the black dots from the white dots using one straight line.

Such a pattern can only be classified 100% correctly by a non-linear classifier.

If you train a multinomial Naive Bayes classifier on the data in Figure 1, you get the decision boundary seen in Figure 2a.

Note that the dotted area represents the class 1 and the clear area represents the class 0.

It can be seen that no matter what the angle of the line is, at least one point of the four will be misclassified.

In this instance, it is the point at {5, 1} that is misclassified as 0 (since the clear area represents the class 0).

You get the same result if you use a POS HBC.

SOP Equation

Our research showed us that something amazing happens if you use the second equation.

With the “sum of products” equation, the HBC becomes capable of deep learning.

SOP + Multinomial Distribution

The decision boundary learnt by a multinomial non-linear HBC (one that computes the posterior using a sum of products of the hidden-node conditional feature probabilities) is shown in Figure 2b.

The boundary consists of two straight lines passing through the origin. They are angled in such a way that they separate the data points into the two required categories.

All four points are classified correctly since the points at {1, 1} and {5, 5} fall in the clear conical region which represents a classification of 0 whereas the other two points fall in the dotted region representing class 1.

Therefore, the multinomial non-linear hierarchical Bayes classifier can learn the non-linear function of Figure 1.

Gaussian Distribution

The decision boundary learnt by a Gaussian nonlinear HBC is shown in Figure 2c.

The boundary consists of two quadratic curves separating the data points into the required categories.

Therefore, the Gaussian non-linear HBC can also learn the non-linear function depicted in Figure 1.

Conclusion

Since SOP HBCs are multilayered (with a layer of hidden nodes), and can learn non-linear decision boundaries, they can therefore be said to be capable of deep learning.

Applications to NLP

It turns out that the multinomial SOP HBC can outperform a number of linear classifiers at certain tasks.  For more information, read our paper.

Visit Aiaioo Labs

# Fun With Text – Hacking Text Analytics

I’ve always wondered if there was a way to teach people to cobble together quick and dirty solutions to problems involving natural language, from duct tape, as it were.

Having worked in the field now for a donkey’s years as of 2015, and having taught a number of text analytics courses along the way, I’ve seen students of text analysis stumble mostly on one of two hurdles:

1.  Inability to Reduce Text Analytics Problems to Machine Learning Problems

I’ve seen students, after hours of training, still revert to rule-based thinking when asked to solve new problems involving text.

You can spend hours teaching people about classification and feature sets, but when you ask them to apply their learning to a new task, say segmenting a resume, you’ll hear them very quickly falling back to thinking in terms of programming steps.

Umm, you could write a script to look for a horizontal line, followed by capitalized text in bold, big font, with the words “Education” or “Experience” in it !!!

2.  Inability to Solve the Machine Learning (ML) Problems

Another task that I have seen teams getting hung up on has been solving ML problems and comparing different solutions.

My manager wants me to identify the ‘introduction’ sections.  So, I labelled 5 sentences as introductions.  Then, I trained a maximum entropy classifier with them.  Why isn’t it working?

One Machine Learning Algorithm to Rule Them All

One day, when I was about to give a lecture at Barcamp Bangalore, I had an idea.

Wouldn’t it be fun to try to use just one machine learning algorithm, show people how to code up that algorithm themselves, and then show them how a really large number of text analytics problem (almost every single problem related to the semantic web) could be solved using it.

So, I quickly wrote up a set of problems in order of increasing complexity, and went about trying to reduce them all to one ML problem, and surprised myself!  It could be done!

Just about every text analytics problem related to the semantic web (which is, by far, the most important commercial category) could be reduced to a classification problem.

Moreover, you could tackle just about any problem using just two steps:

a) Modeling the problem as a machine learning problem

Spot the appropriate machine learning problem underlying the text analytics problem, and if it is a classification problem, the relevant categories, and you’ve reduced the text analytics problem to a machine learning problem.

b) Solving the problem using feature engineering

To solve the machine learning problem, you need to coming up with a set of features that allows the machine learning algorithm to separate the desired categories.

That’s it!

Check it out for yourself!

Here’s a set of slides.

It’s called “Fun with Text – Hacking Text Analytics”.

# Intentions and Opinions

In the last blog post, I talked about intention analysis and what it does.

Intention analysis is the identification of intentions from text. Some examples of intentions are:

a) intention to complain
b) intention to inquire
c) intention to issue a directive

In this post, I am claiming that Sentiment Analysis needs Intention Analysis.

Yes, the results of sentiment analysis will be inaccurate unless you know that the intent of the speaker is to express an opinion.

Background

When sentiment analysis was initially proposed by researchers, they applied it to the analysis of product reviews.

The intention of a reviewer is obvious. Reviewers have only one intention: the intention to opine (either to praise or to criticize).

However, with the growth of social media, especially Twitter, the same sentiment analysis methods began to be applied to the analysis of twitter streams and other social media streams.

Now that’s where there is a problem.

Not every message on Twitter that mentions a particular product or brand intends to express an opinion about the brand!

Below are a few illustrative examples.

Example 1: “Is the Canon EOS 5 a good camera?”

This sentence is not an expression of positive opinion, but an inquiry about the Canon EOS 5.

In other words, the intent of the speaker is not to express an opinion, but to inquire.

Example 2: “I am looking to buy me a good Canon camera”

Here, the intention of the user is to purchase a product (people only indicate a preference for good things … no one really looks to buy a bad camera).

However, most sentiment analysis tools will identify this sentence as an expression of positive sentiment.

Example 3: “Take me to a good movie.”

Here, the speaker’s intent is to direct someone to do something.

A directive is not an assertion, and so does not always imply an intention to opine.

Example 4: “My good old Porsche for sale (cheap)”

Here, the speaker’s intent is to talk up something they’re selling.

The intent here is not to express sentiment about the brand.

Conclusion

So, what we can learn from the above examples is that sentiment analysis is not meant to be applied without reservations to Social Media Analysis.

In other words, for sentiment analysis to be accurate when applied to social media, it needs to be supported by intention analysis.

Demonstration

We recently released a sentiment analysis API that has the ability to filter out many kinds of intention including the ones listed above. We’d love to get your thoughts on our work. The demo is available at the following URL:

Demonstration of VakSent (a Sentiment Analysis API from Aiaioo Labs)

Do write me at cohan@aiaioo.com with intent to opine!